Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Int J Pharm Pharm Sci ; 2020 Feb; 12(2): 83-94
Article | IMSEAR | ID: sea-206048

ABSTRACT

Objective: To develop and validate novel more sensitive analytical methods for the concurrent quantification of metformin-canagliflozin and metformin-gliclazide in their bulk forms and in their pharmaceutical preparations. Methods: Two methods were developed based on several chemometric assisted spectrophotometric methods and a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC). The first method applies different spectrophotometric chemometric assisted methods, including ratio difference, derivative ratio and extended ratio subtraction method, while the second method describes a RP-HPLC separation of metformin hydrochloride-canagliflozin and metformin hydrochloride-gliclazide binary mixtures using a C18 column with a mobile phase consisting of acetonitrile: potassium dihydrogen phosphate (adjusted to pH 3) with sodium lauryl sulphate as additive in the ratio of 30:70 (%v/v) in isocratic elution mode at 1 ml/min. Results: The proposed methods were able to quantify each of the studied drugs in their binary mixtures with high percentage recoveries in both methods. The spectrophotometric methods were able to quantify each of metformin, canagliflozin and gliclazide in the ranges of 2.0-20.0 μg/ml, 1.5-40.0 μg/ml and 2.0-30.0 μg/ml, respectively. The RP-HPLC method produced well-resolved peaks at a retention time of 3.92, 6.92 and 9.10 min in the concentration ranges of 50.0-300.0 μg/ml, 5.0-50.0 μg/ml and 10.0-100.0 μg/ml for metformin, canagliflozin and gliclazide, respectively. The proposed methods were optimized and validated in accordance to the International Conference of Harmonisation (ICH) guidelines in terms of linearity, LOD, LOQ, precision and accuracy. Conclusion: The developed methods were found to be sensitive and reproducible methods for the simultaneous determination of anti-diabetic binary mixtures; metformin hydrochloride-canagliflozin and metformin hydrochloride-gliclazide. And thus were successfully employed for the quality control analysis of the pharmaceutical formulations of the studied binary mixtures.

2.
Int J Pharm Pharm Sci ; 2020 Feb; 12(2): 62-69
Article | IMSEAR | ID: sea-206045

ABSTRACT

Objective: To develop and validate new, selective spectrophotometric colorimetric analytical methods for the quantification of methimazole in its pure form and in its pharmaceutical preparations. Methods: Method A is based on the oxidation of methimazole with potassium permanganate in alkaline medium, the manganate ion produced was measured at λmax= 610 nm. Method B is a kinetic determination of methimazole using fixed-time method based on the oxidation of methimazole using known excess of cerium (IV) nitrate in acidic medium and assessing the unreacted Ce (IV) by adding a fixed amount of methyl orange and measuring the absorbance of the resultant solution at λmax=507 nm which is equivalent to the unreacted methyl orange. The reaction conditions and analytical parameters are investigated and optimized. Method validation was carried out according to ICH guidelines in terms of linearity, LOD, LOQ, precision, and accuracy. Results: Beer’s law is obeyed in the range of 1.50–15.00 μg/ml for method A and 0.25–3.00 μg/ml for method B. The developed methods were subjected to the detailed validation procedure. The proposed spectrophotometric methods were applied for the determination of the methimazole in its pure form and in its pharmaceutical formulation. The percentage recoveries were found to be 100.82 % and 99.85 % in the pharmaceutical formulation for the two proposed methods, respectively. Conclusion: Both developed spectrophotometric methods, considered as green analytical chemistry, were found to be novel, highly selective and can be applied for the quality control of methimazole in its pure form and in its pharmaceutical formulation based on the simplicity, applicability of the parameters, accessibility of the reagents employed and reasonably low time of analysis.

SELECTION OF CITATIONS
SEARCH DETAIL